Development and validation of a novel dementia of Alzheimer's type (DAT) score based on metabolism FDG-PET imaging
نویسندگان
چکیده
Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging based 3D topographic brain glucose metabolism patterns from normal controls (NC) and individuals with dementia of Alzheimer’s type (DAT) are used to train a novel multi-scale ensemble classification model. This ensemble model outputs a FDG-PET DAT score (FPDS) between 0 and 1 denoting the probability of a subject to be clinically diagnosed with DAT based on their metabolism profile. A novel 7 group image stratification scheme is devised that groups images not only based on their associated clinical diagnosis but also on past and future trajectories of the clinical diagnoses, yielding a more continuous representation of the different stages of DAT spectrum that mimics a real-world clinical setting. The potential for using FPDS as a DAT biomarker was validated on a large number of FDG-PET images (N=2984) obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database taken across the proposed stratification, and a good classification AUC (area under the curve) of 0.78 was achieved in distinguishing between images belonging to subjects on a DAT trajectory and those images taken from subjects not progressing to a DAT diagnosis. Further, the FPDS biomarker achieved state-of-the-art performance on the mild cognitive impairment (MCI) to DAT conversion prediction task with an AUC of 0.81, 0.80, 0.77 for the 2, 3, 5 years to conversion windows respectively.
منابع مشابه
The diagnostic difference between 18F- FDG PET and 99mTc-HMPAO SPECT perfusion imaging in assessment of Alzheimer's disease
Introduction:Brain imaging with F-18 fluorodeoxyglucose (18F-FDG) positron emission tomography or Tc-99m hexamethylpropyleneamine oxime (99mTc-HMPAO) SPECT is widely used for the evaluation of Alzheimer's dementia (AD); we aim to assess superiority of one method over the other. Methods: Twenty four patients with clinical diagnosi...
متن کاملRegions of interest-based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia.
PURPOSE Neuroimaging is increasingly used to support the clinical diagnosis of patients with cognitive impairment. Dopamine transporter (DAT) imaging, such as DaTSCAN SPECT, tests the integrity of the nigrostriatal pathway, whereas FDG-PET identifies typical patterns of cortical and subcortical hypometabolism. The aim of this study was to assess the relative contribution of DAT and regional glu...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملEvaluation of therapeutic response to donepezil by positron emission tomography.
BACKGROUND Donepezil hydrochloride (Donepezil) is an acetylcholinesterase inhibitor (AChEI) that is used for the symptomatic treatment of Dementia of the Alzheimer's Type (DAT). Recently, the effects of AChEI in patients with DAT have been investigated using positron emission tomography (PET) or single photon emission computed tomography (SPECT). This study is to evaluate the usefulness of fluo...
متن کاملA Cross-Validation of FDG- and Amyloid-PET Biomarkers in Mild Cognitive Impairment for the Risk Prediction to Dementia due to Alzheimer's Disease in a Clinical Setting.
Assessments of brain glucose metabolism (18F-FDG-PET) and cerebral amyloid burden (11C-PiB-PET) in mild cognitive impairment (MCI) have shown highly variable performances when adopted to predict progression to dementia due to Alzheimer's disease (ADD). This study investigates, in a clinical setting, the separate and combined values of 18F-FDG-PET and 11C-PiB-PET in ADD conversion prediction wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage: Clinical
دوره 18 شماره
صفحات -
تاریخ انتشار 2018